Jump Variation Estimation with Noisy High Frequency Financial Data via Wavelets

نویسندگان

  • Xin Zhang
  • Donggyu Kim
  • Yazhen Wang
چکیده

This paper develops a method to improve the estimation of jump variation using high frequency data with the existence of market microstructure noises. Accurate estimation of jump variation is in high demand, as it is an important component of volatility in finance for portfolio allocation, derivative pricing and risk management. The method has a two-step procedure with detection and estimation. In Step 1, we detect the jump locations by performing wavelet transformation on the observed noisy price processes. Since wavelet coefficients are significantly larger at the jump locations than the others, we calibrate the wavelet coefficients through a threshold and declare jump points if the absolute wavelet coefficients exceed the threshold. In Step 2 we estimate the jump variation by averaging noisy price processes at each side of a declared jump point and then taking the difference between the two averages of the jump point. Specifically, for each jump location detected in Step 1, we get two averages from the observed noisy price processes, one before the detected jump location and one after it, and then take their difference to estimate the jump variation. Theoretically, we show that the two-step procedure based on average realized volatility processes can achieve a convergence rate close to OP(n), which is better than the convergence rate OP(n) for the procedure based on the original noisy process, where n is the sample size. Numerically, the method based on average realized volatility processes indeed performs better than that based on the price processes. Empirically, we study the distribution of jump variation using Dow Jones Industrial Average stocks and compare the results using the original price process and the average realized volatility processes.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Multi-scale Jump and Volatility Analysis for High-Frequency Financial Data

The wide availability of high-frequency data for many financial instruments stimulates an upsurge interest in statistical research on the estimation of volatility. Jump-diffusion processes observed with market microstructure noise are frequently used to model high-frequency financial data. Yet, existing methods are developed for either noisy data from a continuous diffusion price model or data ...

متن کامل

Realized Volatility in Noisy Prices: a MSRV approach

Volatility is the primary measure of risk in modern finance and volatility estimation and inference has attracted substantial attention in the recent financial econometric literature, especially in high-frequency analyses. High-frequency prices carry a significant amount of noise. Therefore, there are two volatility components embedded in the returns constructed using high frequency prices: the...

متن کامل

Jump detection with wavelets for high-frequency financial time series

This paper introduces a new nonparametric test to identify jump arrival times in high frequency financial time series data. The asymptotic distribution of the test is derived. We demonstrate that the test is robust for different specifications of price processes and the presence of the microstructure noise. A Monte Carlo simulation is conducted which shows that the test has good size and power....

متن کامل

Model-based Estimation of High Frequency Jump Diffusions with Microstructure Noise and Stochastic Volatility

With the advent of high frequency data, research has been instigated into the intra-day and integrated volatility, measured through e.g. realised volatility. Such measures may be contaminated by microstructure effects and jumps, leading to the development of alternative nonparametric estimators using quadratic variation measures. Instead of using such model-agnostic, non-parametric measures, th...

متن کامل

Output-only Modal Analysis of a Beam Via Frequency Domain Decomposition Method Using Noisy Data

The output data from a structure is the building block for output-only modal analysis. The structure response in the output data, however, is usually contaminated with noise. Naturally, the success of output-only methods in determining the modal parameters of a structure depends on noise level. In this paper, the possibility and accuracy of identifying the modal parameters of a simply supported...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016